
Advanced Querying Interface for Biochemical Network
Databases

Brendan
 Elliott

Stephen
Mayes

Ali
Cakmak

Gultekin
Ozsoyoglu

Z. Meral
Ozsoyoglu

Department of Electrical Engineering and Computer Science
Case Western Reserve University

Cleveland, OH 44106, USA

{elliott, mayes, cakmak, tekin, meral}@case.edu

ABSTRACT
Querying biochemical networks in flexible ways over the web is
important to facilitate ongoing biological research. In this paper,
we present a querying interface for biological networks, more
specifically, metabolic networks. The interface allows for the
specification of a large class of containment, path, and
neighborhood queries with ease from a web browser. The query
specification process is user-friendly, employs hierarchically
arranged relationships among biological entities, and uses auto-
complete features. The interface is provided as part of PathCase, a
system to store, query, visualize and analyze metabolic pathways
at different levels of detail.

Categories and Subject Descriptors
H.2.8 [Database applications]: Scientific Databases – query
language, visualization, biological networks.

1. INTRODUCTION
In this paper, we present a simple, generic, extensible, and yet
powerful querying interface for biochemical networks. The
interface, called the Advanced Query Interface (AQI), is designed
to allow users to construct their own ad-hoc queries from scratch
with ease using only a web browser. We have implemented the
AQI for querying metabolic networks and in three different ways,
which illustrates its extensibility. Figure 1 shows the main entry
to AQI [1] from within the PathCase [2] system, which is in turn a
software system for metabolic pathways, providing web-based
process-, enzyme-, and pathway-centric views, querying, and
analysis of metabolic pathways data.

The goal of the AQI is to allow users to create their own custom
queries against the PathCase database without needing any
knowledge about the structure of the data behind the query or
without needing to know any database query language, such as
SQL.

With the AQI, users can search for pathways, processes (i.e.,

reactions), molecular entities, or organisms, via hierarchically
arranged relationships among these objects. We call such queries
relationship queries. Figure 2 illustrates a query that finds
processes (reactions) that appear in the folate synthesis pathway
or the citrate cycle pathway as well as the query execution results.

Fig. 1. Starting an AQI Query

Fig. 2. Query to find processes in either folate biosynthesis pathway or
citrate cycle pathway

AQI users can also search for metabolic network neighborhoods,
classified into metabolic network neighborhoods or pathway
links-only neighborhoods. Finally, path queries allow users to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’10, March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03…$10.00.

search for paths, classified into metabolic network paths, or
pathway links-only paths. The AQI query specification paradigm
has five features that contribute to the system’s user-friendliness,
all illustrated in Figure 2.

1. Through carefully nested nodes and phrases, an AQI query is
designed to be “English-like” in order to help users “read”
directly what the query specifies. This feature also promotes
easy query revisions as a user can read the query specified so
far, and then make changes as needed.

2. The query interface is constructed dynamically in an intuitive
way by the user according to the query in her/his mind. This
feature has the advantage over static interfaces that a wide
range of queries can be expressed using a single interface, and
the same query can be constructed in different ways.

3. All fill-in (i.e., input) boxes in an AQI query have dynamic
auto-completion features (via AJAX programming),
eliminating the need for users to remember and type complete
and exact names for molecules, reactions, or pathway names--
a significant hurdle in using interfaces.

4. Whenever the results of a query are viewable as biochemical
networks (i.e., graphs, e.g., neighborhood queries), AQI
provides query results in a graph form, in addition to the
tabular form.

5. Whenever the AQI provides users a choice to be made via
clicking a button, bringing the cursor over the button shows a
relevant descriptive text explaining what the choice is about.

A generic interface like the AQI is useful for two reasons.

 Without a generic interface, most systems provide hard-coded
interfaces or forms for users to pose pre-determined queries
by filling in values and receiving a result. Such an approach
lacks flexibility as each new query has to be built by
implementing an interface-specific program—a major effort.

 Some users who are not computer savvy prefer not to use an
elaborate interface, but request a single and simple form-based
interface. However, as users or their preferences change, new
interfaces are continuously needed, and each new interface
has to be built from scratch by a programmer. In such cases, a
generic interface is useful in that, for each new interface, the
systems person can simply create and use one specific
instance of the generic interface. This is indeed the case for
some PathCase “built-in queries” [3], where these queries are
in reality specific AQI query instances. Thus, responding to a
user’s request to add a new built-in query is as simple as
saving a specific AQI query instance, and making it available
to the users.

PathCase [4] is designed for exploratory querying and
visualization, and provides

(a) Visualizations of metabolic pathways at different and
multiple abstraction levels of genetic, molecular,
biochemical and organismal details,

(b) Querying capabilities for metabolic pathways, including
keyword search, ad hoc querying (i.e., the AQI) and
predetermined built-in querying (i.e., built-in queries), using
both textual and graphical user interfaces.

This paper is organized as follows. In section 2, we discuss
related work. Section 3 briefly specifies the PathCase data model
and discusses the specifications of three different classes of
queries, namely, relationship, neighborhood and path queries,
respectively. Section 4 concludes.

2. RELATED WORK
Among pathway data sources with advanced query interfaces,
BioCyc provides multiple ways to access and query its underlying
metabolic pathway databases [5]. Users can pose a wide-range of
queries by invoking Application Programming Interface methods
with proper parameters. Alternatively, BioCyc allows users to
submit direct SQL queries through BioWarehouse relational
database. These access types are highly useful for users who are
capable of writing programs, or who have some knowledge of
specific query languages and the underlying data model. On the
querying interface side, BioCyc’s web-based “Structured
Advanced Query Page” (SAQP) [6] is a very powerful querying
interface involving many entity and relationship types. And,
SAQP shares AQI’s user-friendliness features 1, 2 and 3 listed in
the background. SAQP allows users to dynamically construct
queries by adding additional conditions based on their needs. An
SAQP query (a) starts by specifying a single entity type, where
predicates can only be defined on the attributes of that selected
entity, and then (b) reaches out to other entity types iteratively by
specifying relationships involving other entities via conditions
involving existential and universal quantifications (i.e., “for some
object” or “for all objects”). BioCyc has also another query
interface, called “Advanced Query Form” (AQF). AQF allows
relationship queries between different entities involving single-
level binary relationships. In comparison, user-friendliness
features 4 and 5 are not available in SAQP or AQF.

Genolink [7] is an advanced graph-based querying system. In its
underlying model, each node corresponds to a biological entity,
and edges represent semantic relationships between entities. Users
can intuitively formulate their queries by constructing a graph that
visually represent an advanced query. Genolink also provides
powerful and easy-to-use querying facilities, but limits itself to
relationship queries, and does not consider path and neighborhood
queries. Also, Genolink is not a web-based system, hence users
are required to download the application, install it, and then, also
download the data to query into their own environment. Being a
web-based system, AQI is readily accessible, and it also allows
path and neighborhood queries.

Cytoscape [8] is an open-source biological graph visualization
project, and allows path and neighborhood queries on the
visualized graph. Its advantage is that users can use it to visualize
their own data. This is also a disadvantage in that, for any
visualization, users first need to transfer data into Cytoscape’s
environment in a well-defined format, and then Cytoscape runs
queries only on this currently visualized data. Cytoscape is also
not a web-based application; hence not readily available to the
users over a web browser. Last but not the least, Cytoscape does
not employ hierarchically organized and relationship-based
dynamic query interface model.

KEGG [9] is one of the most commonly used authoritative
pathway data sources. However, its querying capabilities involve
simple keyword search, and KEGG does not provide an advanced
querying mechanism, where AQI running on PathCase with
KEGG data fills in this missing capability on such a large curated
pathways data.

PATIKAweb, described in [10], is another powerful system that
handles biological pathway data similar to PathCase.
PATIKAweb also has a querying interface with a hierarchical
tree-like interface; however, PATIKAweb queries are more

focused around pre-designed orderings of entities, and it is not
clear whether PATIKAweb has support for nesting multiple types
of nodes to create joins like in the AQI. While PATIKAweb also
allows path queries, including additional queries such as shortest
path, it does not provide as many options for specifying the
behavior of path and neighborhood queries.

A few other systems, namely Query-by-Example (QBE) [11],
Portable Explorer of Structured Objects (PESTO) [12], and the
Pathway Query Language (PQL) [13] have attempted to achieve
similar goals as the AQI, such as simplifying querying or negating
the need for the knowledge of a database schema or new language
when querying. QBE simplifies querying, but still requires
working directly with a database schema and a query language.
PESTO uses boxes within a large canvas to represent individual
objects and users can click-and-drag several types of objects on to
the canvas to browse them and optionally fill in field data to
create a filtered query. PQL provides a highly specialized SQL-
like language to execute queries against graph data for paths,
neighborhoods, or subgraphs based on the source graph and given
parameters.

Finally, there are several other works (e.g., [14 - 19]) that do not
directly compare to AQI, but can be considered somewhat
relevant due to their focus on paths in metabolic networks. Hence,
we briefly include such works in the related work discussion, as
well. Croes et al. [14] proposes improvements for pathway
inference by eliminating highly connected metabolites from the
network, and weighing others metabolites based on their
connectivity. Their web interface [15] was not available to study,
despite our several attempts at different dates. Beasley and Planes
[16] studies a mathematical optimization model to recover already
known pathways computationally. This work does not mention
any querying interface or tool implementing the associated
optimization models. Pathway Hunter Tool [17] performs shortest
path analysis on metabolic networks by employing chemical
structure information as the basis of similarity between candidate
substrates and products. This tool and similar others (e.g., [18])
may be useful not primarily as a generic database query tool, but
to infer new (unknown) reactions, thereof paths, between
metabolites. Küffner et al. [19] describes a system that unifies
pathways from different data sources into a PETRI net. However,
this system does not include an advanced query interface, such as
AQI.

3. DATA and QUERY MODEL
PathCase database is relational, with pathways, processes,
molecular entities, and organisms forming four basic PathCase
entities. AQI allows selected attributes of these four entity types,
as listed in Table 1, to be used by users to specify their query
conditions.
PathCase data model represents a metabolic pathway [20] in the
form of a graph where nodes represent molecules, and edges
represent reactions (or processes) connecting the molecules that
take part in the reaction. The term process denotes a reaction,
which can include a catalyzing protein (which also identifies the
reaction and may have an Enzyme Commission (EC) number),
co-factors, inhibitors, and activators. Reactions may be one-way
or reversible. We refer to molecular objects as molecular entities
which include basic molecules, proteins, enzymes, genes, and
amino acids. A pathway can be viewed as a set of interconnected

processes, while a process can be viewed as being made up of
molecular entities. More generally, an entire pathways database
can be viewed as a single large graph of interconnected reactions,
in which certain sub-graphs are identified as specific pathways.
PathCase metabolic pathways are categorized with respect to the
metabolism that they are involved in, such as the amino acid
metabolism, lipid metabolism, etc.

Entity Type Attributes used to specify AQI query conditions

pathway name

process name, reversible

molecule name, name type, molecule type, role, amount

organism name, group name

Table 1. Basic Entity Attributes Used by AQI queries

The PathCase data model is designed in a flexible manner, in
order to hold metabolic network data of multiple data sources:
currently, PathCase is made available for (i) Kegg pathways
(licensed), (ii) BioCyc (human-only) pathways (for demonstration
purposes), and (iii) sample pathways (from literature).

3.1 AQI Relationship Queries
Relationship queries involve hierarchically arranged combinations
of the four main entity types, namely, pathway, process,
molecular entity, and organism. The AQI is a graphical system
where users specify their queries using nodes within a tree-
structure. For relationship queries, each node represents an entity
of the four basic types listed in Table 1.

Each AQI query is comprised of one root node that determines the
type of the query (i.e., relationship, path, or neighborhood query).
Each node contains one or more input fields (as fill-in boxes) used
to specify selection criteria on the selected entity, as well as
buttons for adding child nodes.

Child nodes are added inside the parent node right after the label
that describes the relationship between the parent and the child.
The semantics of the query is to find entities where there exists an
instance of the specified relationship between parent and child.

Example. Another way of reading the query of Figure 2 is: “Find
names of all processes that are in (i.e., exist in) pathways “Folate
biosynthesis” or “Citrate cycle”.

If a parent node contains more than one child node (as in the case
of the query of Figure 6), then the semantics are that all such
related entities must exist (i.e., an ‘AND’ relationship is satisfied).

The number and the type of child nodes allowed depend on the
entity’s relationships with other types of entities. Each input field
can either be given a value that is used as a filter in the query, be
selected for output to the user, or both. Each field is comprised of
one or more input boxes (text boxes, drop-downs, check boxes,
etc.) with descriptive text explaining their purpose.

3.1.1 Query Specification
To specify a query, the user clicks to one of the four entity types,
namely, pathway, process, molecular entity, or organism, and the
corresponding named node appears. Each opened node contains a
number of input fields in the form of “attribute condition fill-in
boxes”, for attributes listed in Table 1. Note that boxes that are
left blank have no affect on the query.

Example. By clicking on the “process” button in the main AQI
menu (See Figure 1), a Process 1 node is opened (See Figure 2),
and two attribute condition fill-in boxes, namely, name and
reversible, are made available to the user.

The output attributes of a query are selected (highlighted with a
dark-color) and de-selected (highlighted with no color) by
clicking on their names. When an entity node is opened, the
default output attribute is Name (which is highlighted when
opened).

Example. In Figure 2, name attributes of Process 1 and Pathway
1 are highlighted; accordingly, the query execution output
produces <Process 1 Name, Pathway 1 Name> pairs.

When an entity node is created, in addition to a selected set of its
attributes, a number of “relationship” buttons are displayed.

Example. For the Process 1 node in Figure 2, there are three
relationship buttons, namely, “Contained in a pathway”,
“Contains a molecular entity”, and “In organism”. And, when
the user clicks to “Contained in a pathway”, Pathway 1 node is
opened to the user, as shown in Figure 2, with two relationship
buttons, namely, “contains a molecular entity”, and “in
organism”.

As stated above, each of the four entities can be nested within one
another forming a tree structure, named the AQI Query tree, with
the tree edges representing different relationships. For example,
processes contain molecules, and are contained in both pathways
and organisms, and the tree itself is physically expressed by
indenting the entity nodes and explicitly drawing lines between
entity nodes, as illustrated in Figure 2.

To simplify the specification of queries, we have made a decision
not to allow arbitrarily many and repetitive nestings of entities,
and enforce a predefined strict tree structure, specific to a given
root entity type. More specifically, no root-to-leaf path in the
query tree can have more than one occurrence of the same entity
type, limiting the maximum query tree height to four (i.e., the
number of major entities in the PathCase data model; see Table
1).

Example. In Figure 2, the button “Contains a process” is
disabled.

Proces s

Pathw ay Molecule Org anism

Containe d In Co ntain s Is In

AND AND

Pro ce ss Mo lecule Org anism

Co ntains Con ta in s Is In

AND AND

Orga nism

Is In

Mole cu le

Has
X

Fig. 4. AQI Query Tree Rooted at Process

Figure 4 specifies the allowed query tree when Process is the root
of the tree. As an example, note that, if a user specifies a query
with Process at the root, and Pathway as its child, a grandchild
node of type Process is not provided to the user as an option.
Figure 5 shows the full query tree when Pathway is the root. The

“X” figure underneath a leaf node means that the corresponding
node does not have any allowed child node to further expand the
query.

3.1.2 Attribute Condition Specification
When a user enters a value into an attribute condition fill-in box, a
predicate is generated, introducing a restriction (or, filter) to the
corresponding attribute. If the user wants to specify multiple OR-
connected conditions, s(he) can do so by clicking to the “or..”
button next to the fill-in box, which adds a new fill-in box.

P athw ay

Proces s Mole cule O rga nism

Co ntains
Conta ins

Is In

AND AN D

Pro ces s Org anism Pathway

Conta ine d in Is In Con tain ed In

A ND AND

Molecu le O rg anism Pa thway

Co ntain s Is In Con tain ed In

AND AND

P roce ss Molecule Pa th wa y

Ha s Has Ha s

AND AND

Proc . Mol. Path.

Has Has Has

AND AND

Mol. O rg. P ath.

AND AND

Conts. Is In Cont. In

Mol. O rg. Pa th.

AND AND

Conts. Is In
Cont. In

P roc . O rg. Pa th.

Cont. In
Is In

Cont. In

AND AND

Proc . Mol. Pa th.

Has Has Has

AND AND

Proc . O rg. P ath.

Cont. In
Is In

Cont. In

AND AND

XX X
XXXX XX XXXXXX

X X X X X X
Fig. 5. AQI Query Tree Rooted at Pathway

Example. For the query of Figure 2, the user typed “Folate
biosynthesis” to the first Pathway 1 Name fill-in box, added a
second fill-in box by clicking to the “or..” button, and then typed
“citrate cycle (TCA cycle)”, resulting in the following OR-
connected predicate specification:

Name=”Folate biosynthesis” OR Name=”Citrate cycle (TCA
cycle)”

3.1.3 Query Specification Aids
There are two query specification aid tools in AQI:

1. Whenever the cursor is moved over a button, AQI displays a
descriptive text which explains the functionality of the
corresponding button.

Example. In Figure 2, after bringing the cursor over the In: a
organism button of the Process 1 node, the text “An organism in
which this process takes place” is displayed.

2. In a given AQI query, all of the fill-in boxes are designed as
auto-completing drop-down boxes. These boxes perform two
special functionalities.
a. The first one is an auto-completion functionality that

attempts to complete the user’s selection as the first few
letters are typed into the box. We give an example.

Example. In Figure 6, after typing “D-Glucose 1” into the
Molecular Entity 1 Name fill-in box, the system displays four
alternatives, and the user chooses “D-Glucose 1-phosphate” as the
full-text value to be entered into the box.

b. The second auto-completion functionality ensures that all
the auto-complete alternatives provided to the user are
those that are guaranteed to return at least one result item
for the query at hand. Without this functionality, providing
a complete list of about 25,000 Kegg molecules as
alternatives is useless.

The second auto-complete functionality is achieved by executing
a background PathCase database query on-the-fly using the AQI
querying engine as follows. The current query is submitted to the
PathCase database in a modified form where

 The only field returned is the suggested fill-in values that are
being provided to the user,

 All other conditions on other fields are satisfied, and

 All other conditions specified on that field are temporarily
disabled. This feature allows users to quickly construct
nonempty queries without needing to first explore the database
to learn the names of available pathways, molecules, etc.

Example. In the query of Figure 6, when the user types “D-
Glucose 1”, a modified AQI query gets executed, which returns
the four molecule names shown in Figure 6. However, if the user
continues to type and enters 2, resulting in “D-Glucose 12”, the
AQI returns no suggestions, indicating that, for humans, there is
no pathway with a molecule whose name contains the phrase “D-
Glucose 12”.

Fig. 6. Formulating a query to find pathways with D-Glucose 1-phosphate
in humans using auto-complete

3.1.4 Query Execution and Implementation
After adding nodes to the query and entering any necessary data
into the fill-in boxes, the query is submitted for execution, and the
results are returned in a tabular form.

Example. Query execution results of the query in Figure 6 is
shown in Figure 7. Note that, in Figure 6, the user selected as
output the triplet <Pathway 1 Name, Molecular Entity 1 Name,
Organism 1 Name> which are the column names of the table
produced in Figure 7.

Fig. 7. Execution Results of the Query in Figure 6.

In summary, the execution of an AQI query proceeds as follows.

 At the client-side (JavaScript): the tree-like interface is
converted into an XML document and sent to the server (via
AJAX).

At the server side: the XML document is parsed and translated
into an SQL query which is executed, producing a final output
table which is then rendered to the user at the client-side via the
renderer object functions.

To implement the AQI interface in an extensible manner, we have
implemented a central library that contains classes for (i) the base
node, field, renderer and queries types, (ii) a query parser, and
(iii) the querying engine.

The AQI design is extensible in that it allows for virtually any
type of query specification and execution by separating the
interface from the querying. The interface is managed using two
types of objects: the node definitions and the interface renderer.
The node definition is where the node specifies which fields are
used in the node and which child nodes can appear beneath the
node. It also specifies any interface-specific parameters to the
interface renderer, such as in what order to display the fields and
child node links. As nodes are added to the query, the interface
renderer is responsible for actually drawing the node and
displaying it to the user. Once the query has been specified and
submitted, the client-side interface is responsible for generating
the XML document and passing it on to the querying engine.

The XML document is specified according to a strict schema
specification in order to facilitate the communication between the
query interface and the library. The node tag is the root element
of the document and is also specified as a child of itself if there
are child nodes in the query. Each node contains one or more
fields based on its definition. Each field can contain multiple
values, which are separated by the ‘OR’ condition as explained
above (attribute-condition specification).

The AQI’s querier takes information based on the node
definitions, and constructs database SQL queries directly from the
query XML document. The engine needs two pieces of
knowledge about a particular node: the SQL required for the node
and the SQL conditions needed per child node in order to “join”
the results of the node with its child nodes. (This simple “joining”
scheme becomes much more complex if the capabilities of the
AQI are expanded; see [21] for a more powerful, but complex,
interface). For the individual node, the engine constructs (i) the
list of tables it requires, (ii) any WHERE clauses that universally
apply to those tables, and (iii) the SELECT and WHERE clauses
for the fields. For the child nodes, each parent node stores the
tables and join conditions that model the many-to-many
relationship between the entities. Given solely this information,
the engine generates the SQL query for each individual node, and
joins the tables of parent and child nodes using its “join” method.
The basic idea behind the join method is to merge the source
table(s) needed for the parent node with the destination tables
required for each child node. The SQL query with the parent’s
information then has (i) all of the child’s information added to it,
and (ii) each table along the path from the source table to the
destination table added to it, along with the proper intermediary
join conditions as defined in the parent node’s definition. To
accommodate for new versions of the AQI for different
applications (we are currently planning a version for a
metabolomics project), we have chosen this generic and
extensible SQL query engine design versus a more specific
PathCase-focused implementation.

After the querier is finished executing, the result table is given to
the renderer. For extensibility, the renderer is designed to operate
in any manner the query requires, such as rendering controls on a
graphical user interface or HTML code for a web page.

The central library is designed with flexibility and extensibility in
mind. The interface and the queries all follow a basic structure

and must inherit the base types that are given in the library. The
base types themselves are designed to give programmers
flexibility when creating different classes of queries so that they
could easily change or switch renderers or query engines with
very little effort. This allows the programmer to create different
renderers for each particular application while only needing a
single shared set of node definitions and querying engine.

The above-summarized design allows for the AQI to be easily
ported to other projects. If relationship queries are to be
processed, then one instance of each type need to be defined
along with their input fill-in box values and relationships. If other
types of (e.g., neighborhood or path) queries are to be processed,
then the software designer implements project-specific queriers
and renderers. In fact, neighborhood and path queries are
implemented by creating specialized queriers that use the path
querying engine (as opposed to the SQL querying engine used for
relationship queries).

3.2 NEIGHBORHOOD QUERIES
Neighborhood queries are designed to search for biological
entities that are in the vicinity of a given biological entity in a
biological network. In PathCase, the metabolic pathways network
is represented by two different graph models: (i) the metabolic
network graph, and (ii) the pathway links graph.

The metabolic network graph represents relationships between
molecules and processes. The nodes in this graph represent the
individual molecules that are either substrates or products of a
process and the hyperedges represent processes. Hyperedges are
edges that can connect more than two nodes; a process is a
hyperedge since each process potentially has multiple molecules
as either substrates or products. The edges are directed; pointing
from the substrates to the products.

The pathway links graph represents the pathways and their
relationships at a higher level. The nodes in this graph represent
individual pathways, and the edges represent shared molecules
between pathways. In order for two pathways A and B to be
connected through a shared molecule m, m must be produced by
pathway A, and then consumed by pathway B, or vice versa. This
production and consumption relationship defines the direction of
the edges which point from the pathway that produces the
molecule towards the pathway that consumes the molecule.

The AQI allows for the formulation of queries on both graph
models. Since the node and edge semantics are different in each
graph representation, the query specification involves distinct
input fields and constraints depending on the underlying graph
representation. Thus, the AQI provides two different
neighborhood query specification interfaces.

3.2.1 Metabolic Network Neighborhoods
The neighborhood queries on the metabolic network are accessed
by clicking on the “Metabolic Network Neighborhood” button in
the main AQI menu (see Figure 1). The first portion of the query
is the subgraph definition. The AQI allows for two separate graph
restrictions. The first is a flag indicating whether or not the user
wishes to include common molecules in the graph, such as H2O
which appears in a large number of reactions and is typically not
useful to include in the graph. If excluded, these nodes (and
perhaps some reactions that were only linked to these molecules)
are removed from the graph.

The second is an option to restrict the graph based on a well-
defined subgraph in the overall network, such as a particular
pathway or reactions occurring in a particular organism. Also, in
this section, a user can choose to execute the query for neighbors
located downstream or upstream of the source biological entity.

Next, the user needs to select the starting (i.e., source) entity,
which can be either a molecule or a process. The final section in
the interface allows the user to define restrictions on the
neighborhood. These restrictions are the length and excluded
molecules/reactions restrictions. The length parameter specifies
the borders of the neighborhood through the minimum and the
maximum allowed distance between the source entity and its
neighbors. Furthermore, some potential neighbors may be
eliminated by enforcing that a path between the source entity and
its neighbors does not include a user specified set of
molecules/processes. The entities constituting the borders of a
neighborhood can be restricted to processes or molecules via
selection from the “finishing with” input box. We give an
example.

Fig. 8. Metabolic Network Neighborhood Query

Example. Figure 8 shows an AQI query which is set to search for
the neighbors of 3-Sulfinylpyruvate (i.e., source molecule) that
are located at most 2 steps away (upstream or downstream) from
the source molecule, where the metabolic network is restricted to
a single pathway, that is, Cysteine metabolism.

Figure 9 depicts the results (in both tabular and graphical formats)
for the query in Figure 8. The textual representation of the result
set lists the molecules and processes at each distance value (i.e.,
step) up to the maximum distance (i.e., 2, for this query) set by
the user. The arrows under molecules column point to processes
that are immediately next to the corresponding molecule in the
network through substrate/product relationship, and, in the next
column, these processes are expanded with their
substrates/molecules (i.e., arrows in this column represent edges
from a process to its molecules). The graphical output highlights
molecules/processes at each distance value in a distinct color, and
those processes/molecules that are not in the specified
neighborhood are grayed out (i.e. the remainder of the ‘cysteine
metabolism’ pathway).

Fig. 9. Execution Results of the Query in Figure 8

3.2.2 Pathway Network Neighborhoods
Pathway Network Neighborhood queries have a simpler interface
that is similar to the Metabolic Network Neighborhood queries. In
this section, we briefly explain the differences. First, the only sub-
graph restriction allowed is to limit the graph to the network of a
specific organism. Second, the source biological entity can be a
molecule or a pathway. Likewise, pathway and/or molecules can
be marked for exclusion from the paths between a source entity
and its neighbors. For more details, see [23].

3.3 PATH QUERIES
Path queries allow the user to search for all the possible metabolic
connection chains between biological entities. Semantically, path
queries are a special case of neighborhood queries, with an
additional input parameter to specify the “ending” biological
entity. As in neighborhood queries, path queries can be executed
on either the metabolic network graph or pathway links graph by
clicking on the corresponding button in the main AQI menu (see
Figure 1).

3.3.1 Metabolic Network Paths
The metabolic network path query interface contains all the input
parameter fields from the metabolic network neighborhood query.
In addition, path queries require the specification of at least one
destination biological entity. The source and the destination
entities on the metabolic network can be a process or a molecule.

One unique feature of the AQI path query interface is that it
allows the specification of multiple hops. A hop is identified by a
starting molecule and an ending molecule, and corresponds to a
subpath of the overall path from the source entity to the final
destination entity. The AQI enforces that the resulting paths
contain the user-created hops in the order specified by the user.
Hops are created via adding “To” fields on the interface by
clicking on the corresponding “To” button(s) more than once.

Fig. 10. Metabolic Network Path Query

Fig. 11. Execution Results of the Query in Figure 10

Another interesting feature of the AQI path querying scheme is
the path restrictions. Each path between the source, hop, or the
destination entities can have a restriction; leading to multiple path
restrictions if the query contains multiple hops. There are three
defined restrictions: a length restriction, an inclusion restriction,
and an exclusion restriction. The length restriction specifies a
minimum and a maximum length for the path. The inclusion
restriction specifies zero or more entities that must be part of the
path. And, the exclusion restriction specifies zero or more entities
that cannot be part of the path. We give an example.

Example. Figure 10 shows an AQI query specification which is
created to search for the paths between L-Cysteine and Sulfur
Dioxide, where the query defines two restrictions: (i) the graph is
restricted to reactions and molecules of the “cysteine metabolism”
pathway, and (ii) path length should be at least 2, and at most 3.
Figure 11 presents the result of this query.

The path queries on the pathway links graph are formulated in a
similar way. The differences between the path queries on the
metabolic network graph and the pathway links graph are the
same as those that are discussed for the neighborhood queries.

4. DISCUSSION and CONCLUSIONS
In this paper, we have presented the Advanced Querying Interface
(AQI) which enables users to dynamically construct customized
query interfaces against biological network databases. The AQI
supports three kinds of query types: (i) relationship queries, (ii)
neighborhood queries, and (iii) path queries that allow multiple
hops.

While the PathCase database currently has many tables (more
than 30 tables) involving many other entity types (such as genes,
chromosome, gene products, RNA, protein, EC numbers, etc;
please see [22] for a simplified subset of the PathCase database
schema), as a first step and for simplicity of the interface, we have
chosen to specify queries involving only the four entity types
pathway, process, molecule, organism. The second stage, if the
users adapt the AQI, is to expand the design and implementation
of the AQI with other entity types in the database. Note that such
a type and phrase extension (e.g., the phrase “encoded by gene
mmgD”, or “catalyzed by enzyme pyruvate carboxylase”) is quite
natural and extensible, and we do not expect that the interface will
be overly complicated.

In terms of the metabolic network database size, AQI has scaled
very well. PathCase with Kegg data is sizable with 147 pathways
for each of 860 organisms, more than 3 million genes, etc. For
this database, the AQI query execution is very fast, and scales
very well to a browser-based query execution. For performance
evaluation of the AQI, please see [23].

5. ACKNOWLEDGMENTS
This research is supported by the National Science Foundation
(DBI-0849956, DBI-0743705, CRI-0551603, CCF-0820217).

6. REFERENCES
[1] AQI. 2009. Available at

http://nashua.case.edu/PathwaysKegg/Web/LinkForwarder.a
spx?rid=AdvancedQueryInterface&rtype=br

[2] PathCase. (2009.a). PathCase System available at
http://nashua.case.edu/pathways.

[3] PathCase. (2009.b). PathCase Built-in Queries available at
http://nashua.case.edu/PathwaysKegg/Web/LinkForwarder.a
spx?rid=SimpleQueries&rtype=br

[4] Elliott, B, Kirac, M, Cakmak, A et al. (2008). PathCase
Pathways Database System. Bioinformatics 24(21):2526-
2533, November 2008.

[5] Krummenacker, M, Paley, S, Mueller, L, Yan, T, Karp,
PD.Querying and Computing with BioCyc Databases,
Bioinformatics 21:3454-5 2005.

[6] Structured Advanced Query Page (2009). Available at
http://biocyc.org/query.html

[7] Durand, P., Labarre, L., Meil, A. et al. GenoLink: a graph-
based querying and browsing system for investigating the
function of genes and proteins. BMC Bioinformatics. 2006;
7: 21.

[8] Shannon P, Markiel A, Ozier O et al.. Cytoscape: a software
environment for inte-grated models of biomolecular
interaction networks. Gen. Res. 2003 Nov; 13(11):2498-504

[9] Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K.F. et
al. From genomics to chemical genomics: new developments
in KEGG. Nucleic Acids Res. 34, D354-357, 2006.

[10] Dogrusoz, U. et al. (2006) PATIKAweb: a Web interface for
analyzing biological pathways through advanced querying
and visualization, Bioinformatics, 22(3), 374-375.

[11] Zloof, M. (1977). Query by Example. IBM Systems Journal
p. 324 – 343 No. 4.

[12] Carey, M. et al. (1996). PESTO: An Integrated
Query/Browser for Object Databases. VLDB, p. 203 – 214.

[13] Leser, U. (2005). A Query Language for Biological
Networks. Bioinformatics Vol. 21 Suppl. 2 p. ii33 – ii39.

[14] Croes D, Couche F, Wodak SJ, van Helden J. Metabolic
PathFinding: inferring relevant pathways in biochemical
networks. Nucleic Acids Res. 2005 1;33:W326-30.

[15] MetaPathFinding Tool, (it was offline during the preparation
of this manuscript),http://www.scmbb.ulb.ac.be/Users/didier/
pathfinding/metabpathfinding.php

[16] Beasley, JE, and Planes, FJ. (2007). Recovering metabolic
pathways via optimization. Bioinformatics 23:92-98 2007.

[17] Rahman, SA et al. (2005). Metabolic pathway analysis web
service (Pathway Hunter Tool at CUBIC). Bioinformatics
2005, 21: 1189-1193.

[18] Hatzimanikatis, V, Li, C, Ionita, JA, Henry, CS, Jankowski,
MD, Broadbelt, LJ. (2005). Exploring the diversity of
complex metabolic networks. Bioinformatics, vol. 21, num.
8, 2005, p. 1603-1609.

[19] Küffner R, Zimmer R, Lengauer T. Pathway analysis in
metabolic databases via differential metabolic display
(DMD). Bioinformatics. 2000 Sep;16(9):825-36.

[20] Michal, G (1999) Biochemical Pathways Spektrum
Akademischer Verlag, Heidelberg.

[21] Balkir, H.N. et al (2002), A Graphical Query Language:
VISUAL and Its Query Processing, IEEE Transactions on
Knowledge and Data Eng., 14(5): 955-978.

[22] PathCase Architecture and Data Model, 2009. Available at
http://nashua.case.edu/PathwaysWeb/DataModel.aspx

[23] Mayes, S. (2007) Advanced Interface for Querying Graph
Data. Master's thesis, Case Western Reserve University,
EECS Dept., Cleveland, Ohio, USA.

